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PROBLEMS OF THE INTERACTION OF A BLUNT BODY WITH AN ACOUSTIC MEDIUM* 

F.M. BORODICH 

The initial (supersonic) Stage of the interaction of a blunt body 
(penetration and impact) with an acoustic medium (a compressible fluid) 
is examined in a laminar formulation. It is assumed that 
the boundary of the domain of interaction of the body with a medium moves 
at a velocity exceeding the velocity of sound in the medium. Explicit 
formulas are derived for the velocity of the particles of the medium and 
the pressure at each point of the interaction domain boundary. It is 
shown that the general solution of the linearized problem for the super- 
sonic stage of blunt body penetration, given by an explicit formula /l-3/ 
in the form of a double integral, can be converted in such a manner as to 
reduce the formula to a single integral for an arbitrary body penetrating 
the fluid at an arbitrary velocity. Earlier only problems of the pen- 
etration of bodies of revolution bounded by second-order surfaces (cone 
/3, 4/, paraboloid /4, 5/, ellipsoid and hyperboloid /4/j at a constant 
velocity were investigated analytically using such a reduction. An exact 
expression is obtained for the law of motion on the inertia of a body of 
arbitrary shape after its contact with the fluid. 

*Prikl.Matem.Mekhan.,52,4,610-616,1988 



474 

1. Formulation of the problem. Let a rigid blunt body penetrate at a velocity C' (I) 
a weightless acoustic medium occupying the halfspace z >O. It is assumed that the angle 
between the tangent plane to the body at points entering into interaction with the medium and 
the plane z = 0 is small in the whole time interval 'I' under consideration. The boundary con- 
ditions from the body surface are carried over to the z = 0 plane. It is assumed that V(t)< 

a, t E IO, Tl, where a is the velocity of sound in the medium. 
We take the origin of the Cartesian coordinate system at the point of initial tangency 

of the body with the medium. The z axis is directed into the depth of the medium while the 
x and y axes are along the initially free surface. 

The motion of the particles of the medium is considered to be potential, i.e., thevelocity 
voftheparticlesofthe medium and the pressure p are defined in terms of the potential O(x,t) 
by means of the formulas /l-3/ 

v (x, t) = grad CD (x, t), p (x, t) = --pa@ (x, t)/at, x ER+~ (1.1) 

where p is the density of the medium, and x = (x, y,z) is the vector of points of the half- 
space. 

The potential @ is a generalized, piecewise-smooth solution of the wave equation in Ri, 
l.e., it is continuous everywhere and smooth everywhere with the exception of the regular 
hypersurfaces Sk partitioning R4 into a finite number of subdomains. The partial derivatives 
of @ from each of the sides of the singular surface &' t have a unique one-sided limit. Outside 
of St the potential @ satisfies the equation 

while the conditions 
satisfied on Sk 

q Q(x, t)=O, xz R+S, t~(0, 2’1; UE . (1.2) 
$$+$-++-&g 

of a regular strong discontinuity (in the Sobolev sense) /6-S/ are 

[(L,v)]=O; LG{G, $, a;_2g} (1.3) 

rL,a” co5 (v, Xi) + Iq cos (v, t)l=0, i=l, 2, 3; tl=zt 

52 = y, x3 = z 

Hence and henceforth, the square brackets denote the jumps in the quantities on passing 
through St while the angle brackets denote the scalar product, and Y is the unit vectornormal 
to Sk in Rd. 

We define the perturbation domain 51 in R’ as the set of pointstowhichtheperturbation 
caused by submersion of the body would reach. Then 

Q, (x, t) E 0, (x, t) E R’ \ 52 (1.4) 

since the medium is at rest at the initial instant. 
The condition 

NJ ($9 Y, 0, t)laz = V(t), (x, I/) E G (t), t E (0, 7’1 (1.5) 
is satisfied at points of opening of the domain of body contact with the medium G in the 
z=o plane. 

For t~(0, 2’1 the submersion is supersonic in nature if the inequality 

min a (5, y, t) > a, 0 < t < T 
(x. U&SO 

(1.6) 

is satisfied. 
The velocity a of motion of the boundary % of the contact domain at the point(x,, y,, 0) 

at the time t, equals 

a0 = Y, I grad f (x,, yo) I-‘; a, = a h brat 

where f is the function governing the formula of the body. 

G, (G, = G (to)) is determined by the equation 

f(x, y)=H(Q, (2, Y) E =,; H(t)= , 

to), vo = v (to) (1.7) 

The boundary 8G, of the domain 

(1.3) 

It is assumed in the penetration problem that v(t) is a known function of the time. In 
the impact problem V(t) is found from the equation of motion of the body in inertia 

m -g = - P (t). P(t)= SP(G Y, 0, t)dsdY 
j w 

(1.9) 
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where m is the mass of the body and P is the force of its interaction with the medium. 

Remarks. lo. It follows from conditions (1.1) and (1.3) that the jump in the velocity 
vector is directed along the normal to the surface of discontinuity Sk while its magnitude 
is proportional to the jump in the pressure /7/ 

I Iv1 1 = lPll(P4 (i.10) 

So. The surfaces of strong discontinuity Sk are characteristic for the wave equation 

/6, 8/. 
3O. The boundary of the contact domain can absorb energy. This energy is interpreted 

/8/ as the energy entrained by spray jets that occur during penetration /9/. 

2. The pressure and velocity on the boundary of the contact domain. Let the 
point be (z,, Y,, 0)~ 8G,. Then the limit values of the pressure p and the velocity vector v 

can be determined as equal (in the problems under consideration) to the jumpsintheappropriate 
quantities during the approach to this point from the side of the contact domain. 

The magnitudes of the velocity and pressure jumps at points of the contact domain boundary 
are determined by the expressions 

I Iv1 I'= V&C, (ao" - a')-'$ Ipl = apV,a, (aoa - aa)+ (2.1) 

Indeed, the boundary S,= S(t,) of a section through the domain P by the plane t = t, 
propagates at the velocity a (the velocity is measured along the normal to S,). The cosine 
of the slope 9 to the plane z= 0 is defined by the expression cos8 = (aa* - al)'%+ The vector 
WI is directed along the normal to S, and its projection on the z axis at the point (zO,yO,O) 
equals V,. Hence, taking account of the equality I[ull= V,/cos0 and (l.lO), we obtain (2.1). 

3. The explicit form of the solution of the penetration problem in the 
supersonic case. It is known (for instance, /l-4, 10, 111) that the solution of problem 
(1.2)-(1.5) has the form of a retarded potential 

Formula (3.1) yields an explicit solution of the problem since the function in the braces 
is known over the whole 2 = 0 plane: if (r, y) E G (to - &/a) then it equals V (t,, - R,ia), 

otherwise it equals zero (see conditions (1.4) and (1.5)). However, the solution of specific 
problems by utilizing (3.1) is quite awkward (see /4/J. We will later simplify (3.1) by 
converting the double integral into a single one. 

bet us introduce the "lagging" time 'c, z>O. we note points on the surface z = 0 whose 
perturbation at the time 'c affects the motion of the point x0 at the time t,. The points 
noted generate a circle 0, with centre at the point (x0, Y,) of radius 

I (r) = [a2 (t, - r)" - ZOZIV' (3.2) 

Let U(t) = 0, 0 G(z), ~(7) be the angular measure of the set U(T) and p the setofpoints 
r for which (~(r)>0. 

We examine all those points in the z = 0 plane whose perturbation in the time interval 
between r and z + dt exert an influence on the behaviour of the medium at the point x0 at 
the time t,. The area of the set of these points is determined by the formula (we take (3.2) 
into account) 

ds (7) = I 1 (T)cp(T)dl (T)I = a2 (to - z)cp(z)dz (3.3) 

We have 

RI = a &I - z), dxdtdy I@%II)EG(I) = (2.9 (7) 

substituting these expressions into (3.1) and taking account of (1.5) and (3.3),weobtain 

(3.4) 

Formula (3.4) for the lagging potential is especially simple in the axisynrmetric case. 

4. Supersonic penetration of bodies of revolution in a fluid. In this case 
the domain G(t) is a circle of variable radius r* (0. 

4.1. Selfsimilar problem. It is known that if a body whose surface shape is described 
by a positive, smooth, homogeneous function of degree d penetrates an acoustic medium at a 
velocity V(t)= V(l)ld-', d > 1, then the problem is selfsimilar 

@ (x, t) = (t/t,pD @,x/t, tl) 
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The domain G (t) is obtained from the domain G(t,) by conversion of the homothety, where 

the velocity of domain boundary motion is constant and r* (t) = Mat, and .Vi' = a (z, IJ, t) n = con&. 

We will examine the problem of determining the set k in (3.4). 

Different cases of the intersection of the circle 0, with the domain G(T) are possible 
depending on the values of the quantities To, 20 and M. 

Case 1. For 7 = 0 the centre of the domain G(r) lies outside a circle of radius I, = 

l(O) with centre at a point with coordinates (rO, 0), r,, = (.z,,~ + yo2), i.e., ro2 + zo2 > U’P. 
Then the following modifications are possible. 

la. The boundary of the circle G(r) does not intersect the circle 0,. Then the wave will 

not arrive at the point x0 and the velocity " (XIV lo) equals zero. 

lb. The circle G(~)grows, touches the circle 0, at the time t_ and intersects it up to 

the time 1, and then recedes from it. Then the set.p is the interval (t-,7+). From the cosine 

theorem we then have 

q=2arccos 
r02 + P(Z)- r*Z(r) 

2rol(r) 9 To - r* w = 1 w (4.1) 

lc. The circle G(T)qrows and starts to intersect the circle 0, at the time t_ while it 

encloses it completely fromthetime T+. We then obtain 

Then 

p = (L Zk), To = t, - z,la (4.2) 
, 2 aPCCOS ro2 + 1% (T) - r*% (T) 

‘cd 
\ 

2roI (T) ’ T- < T < z+ 

2n 3 T+<T<G 

We find the quantities T_ and Z, from the conditions 

r. -r* (TF) = 3: 1 (Q), r0 > 1, (4.3) 

Case 2. For t=O the centre of the domain G(z)lies inside the circle 0, of radius I,. 

the following modifications are possible. 

2a. The circle G(z)qrows, is tangent to the circle 0, at the time z_ and intersects I . 
it to the time T+ and then recedes from it. Then the angle 'p (Z)is determined from the first 

formula in (4.1) while the set p is the interval (.c_,z+) where 

r. * r* (74 = 1 @T) (4.4) 

2b. The circle G(~)grows, starts to intersect the circle 0, at the time 't_ and encloses 

it completely from the time t,. Then the set p and the angle 'p (7) are determined by (4.2), 

the quantity z_ by (4.4) with the upper signs, and T+ by (4.3) with the lower signs. 

Solving (4.1) and (4.3), we obtain 

7~ = (Mr, - at, t 1/D)l[a$W- I)], r0 > 1, 

D = (Mr, - at,J2 - (M" - l)(ro2 + z.,,~ -c+,~) 

,(4.5) 

For r,, < 1, the expression for T+ corresponds to (4.5) and for z_ it corresponds to (4.5) 

with the formal replacement of a by-a. 

In Jhe case ro>lo if D (0 then modification la is realized, if D 20 and T+ < z* = 

r&Vu), then modification lb, if D 20 and r+>~* then modification lc. 

In the case when r,,< I,, if %+<t*, modification 2a is realized; if 'c+>Z* modification 

2b is realized. 

4.2. Determination of the velocity potential in the z = 0 plane. Because of the 

arbitrariness of the function f and the conditions of the problem, r+(z) can be an arbitrary 
function such that 

r*' (r) > a (4.6) 

Different cases of the intersection of 0, with G(z) are possible depending on the values 
of r0 and the form of the law of variation of r* (z). 

1) rO>Z, =at,. In this case modifications la and lc are possible and (4.2) and (4.3) 
will hold. Modification lb is not realized becuase of condition (4.6). 

2) r,<l,. In this case only modi,fication 2b is possible and (4.2) and (4.3) with the 
lower signs and (4.4) with the upper signs will be valid. Modification 2a is not possible 
because of condition (4.6). 

Substituting the expression for cp from (4.2) and the dependences (4.3) and (4.4) into 

(3.4j.l we obtain 

@(rO, 0, t,J=- a{+rV(T) arccos+dz + 5 V(T)&} (4.7) 
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K* = r:+ u2 (t, - T)” - r*2 (z), L = 2r0a (to - %I 

Taking account of (l.l), we find the pressure distribution in the domain G (to) from 

(4.7) 

P(r,,O,&J=ap f 

r+ 

{ s 
v (7) 

K_ ~ d7 _t V (t,,) 
1 

(4.8) 
r- (to - r)d/La- X," 

Remarks. lo. For ,rO= 0 .we obtain r-=7+ from (4.4), and then from (4.7) we have 

1. 

'I'(O,O, to) =-a 1 V(T) dr, 
1 

a 
P (O,O, fo) ==p v(t0) -V(Q) a+ r*' (7+) I (4.9) 

'c+ 

The integrand in (4.8) has a singularity at roe= 0; consequently, it is best to use 
(4.9) for a numerical computation. 

2O. The formula obtained earlier /12/ by integral 
transform methods for the pressure, analogous to (4.8), 
is given incorrectly in /12/. 

As an example the figure shows as continuous lines 
the dependence of ji = p (rO, 0, t,,)l(pnV(t,)) on i= rd(ato) in 
selfsimilar problems for M = 2; the k-th curve 
corresponds to the degree of selfsimilarity of the 
problem d = 1 + k/2 (k = 0, 1, 2). In these cases L = (r,/a - to)/ 
(M - 1) for r0 > 1, and L = (ta - r,,/a) l(M + i) for r0 <I,; r+ = (to + 
rddl(M + i). 

Notethatfor rd(at,J= M all the curves converge atone 
point M/I/M'-- i. Thisresultisaconsequenceof (2.1). In 
the specialcasewhen d= 1 itwasobtained earlier /3/. 

4.3. Determination of the potential and pressure 
on the z axis. The circle 0, constructed for points 
on the s axis touches the boundary of the circle G (r) 
simultaneously at all its points at the time z_, and then 
is completely enclosed by it. Then the set TV is the 
interval (T_, t,, - z&a), and cp = 2%. We obtain from (3.4) 

1.-z/a !.o 
Q, (0, zo, &)=--a J_ VWdr (4.10) 

We find the quantity r_ from the condition r*(T_) = l(t_) or taking account of (1.8) and 

(3.2), we have f (l/a2 (to - r-)3 - zo2) = H (r_). We obtain from (1.1) and (4.10) 

P (0, 20, t,) = ap {V (to - 2,/a) - V (t_)aT_lat,} 

s =i {I -M(z_) [I - (&)*]"}-1, M(t_)= a(r*, r_) 

The potential along the axis of revolution was determined earlier /4/ in an analogous 
problem (for a constant penetration velocity) but errors were admitted hereinthe computations. 

5. The impact of three-dimensional bodies on an acoustic medium. Itisknown 
/13/ that the force acting on a body of arbitrary shape that penetrates into an acoustic half- 
space at an arbitrary velocity V(t) equals 

P (t) = P, (t) + P, (t), P, (i) = paV(N?o(% p, U) = (5.1) 
Pav, (001 0) 

where Q,, is the area of the domain G (% QI is the area of that domain outside G(t) whose 
particles are involved in the motion, and V, is the mean particle velocity on the area Q1. 

The area is Q1 =0 for supersonic motion of the points * (t) * If Ql#O, then 

v, < 0 /l/ under the ordinary conditions of body impact on a fluid. Therefore, p, (6 2 p (0, 
where the equality is conserved until a (2, Y. t) > 0. 

For CC(Z, y,t)>n we have from (1.9) and (5.1) (taking into account that v' = VdvldH, 

JJ IH @)I = v (t)) 
mdvldtr = --puQ,(H) 

Integrating this equation, we obtain an expression for the body velocity and a relation- 
ship between the time t and the depth of submersion H 
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v(H)=V, - purr-‘F (H); F (H) = T Q. (h) dh, v, = 1’ (0) = v (0) 
0 

t= s dh 
V. -pam-'F(h) 

0 

45.2) 

Here F(H) is the body volume under a cut at the height H. 
Formulas (5.2) yield the law of motion in inertia for a blunt body of arbitrary shape 

after its impact at a velocity v0 on the surface of an acoustic half-space. 
Let us find the depth H, at which the supersonic nature of the motion of the domain 

boundary is lost. we obtain from (1.6)-(1.8) and the first formula in (5.2) 

In particular, if the body is an elliptical paraboloid, i.e., f(z, I/)=A~'+B!J', B>A>O, 

we have 
H 

F(H)= SQ&)dh= c 

II 2fAB 

Substitutingthisexpression into (5.2) and integrating, we obtain 

We find the expressions 

H(6) = 2V&-' (eb6 - 1) (,Pt + ,)-I 

v (1) = 4v0eP( (8 + i)-" 

P (6) = -4V,mfi (,?I - #) (tier + I)-3 

0.4) 

(5.5) 

from (5.4), that yield the exact solution of the problem of the impact.of an elliptical 
paraboloid to the surface of an acoustic half-space. 

Taking account of (1.6) and (5.3), we determine the time of supersonic mode termination 
6, (e (r, t.) = o) from the equation 

From (5.5) it can be obtained that V"(t,)= 0, where 6,= fFln (2+ 1/z). Hence, we have the 
upper bound for the maximal fluid drag force 

-.- 
V (6,) - Za1/H (f,) B = 0 

Note that expressions analogous to (5.5) have been obtained in /14/ in the problem of 
body impact on a surface of an isotropic elastic half-space. 

We find an expression for the velocity potential in the a=@ plane from (4.7) and (5.5) 
forthecase of impact by a paraboloid of revolution on an acoustic medium (A = B) 

The quantities r_ and T+ are determined from (4.3) and (4.4). 
Graphs of the pressure distribution jJ= p(rO,O, t.)/(paV,,) over the interaction domain are 

represented by dashed lines in the figure for 
p=lg/cm3, A=O.im-l, 

6,=6,/2 (curve 1) and 1,=t, (curve 2) for 
a=1500 m/set, V,- 100 m/set, and na= WOkg. 

The author is grateful to A.C. Khovanskii for his interest. 
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THE PLANE STATE OF STRESS OF AN ELASTIC PLANE WITH TWO INTERSECTING SLITS* 

YU.A. ANTIPOV and G.YA. POPOV 

The construction of an exact closed solution for the problem of stress 
concentration in an elastic plane near two rectilinear slits of identical 
length that intersect at the centre at an arbitrary angle is proposed. 
An arbitrary rupturing and shearing load is applied along the slit edges. 
The construction of the solution of the problem is based on its reduction 
to a Riemann problem with a matrix coefficient of special structure that 
allows solution by quadratures. The possibility of solving such a problem 
was mentioned in /l/. This solution was first constructed for the case 
when the index xe=O for the ratio of the characteristic functions of 
the matrix coefficient /2/, and then also for x.-+0/3/. 

A different method from that described in /3/ is proposed for solving 
the Riemann problem for the caseswhen x,= 1 and xe= -1. The solution of 
the problem, constructed by quadratures, is converted to a form convenient 
for numerical realization. Computational formulas are obtained for the 
stress intensity factors. 

1. Formulation of the problem of intersecting slits and its separation into 
an auxiliary problem. We investigate the plane state of stress of an elastic plane with 
two slits of identical length 2b (without loss of generality, we.consider b=i) that 
intersect at the centre at an arbitrary angle 2a (problem T). We take the bisectrix of the 
large angle between the slits as the horizontal axis of synnnetry (Fig.1). As usual, the 
positive direction of variation of the angle 8 is counter-clockwise. A positive load 
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